Guiding the Way: Single Pole and Multi-Pole Lightguides for UV/Visible Spot Light Curing Systems

In today’s fast-paced manufacturing world, precise and efficient curing is essential. UV/Visible spot light curing systems offer a powerful solution, but delivering the light to the target area requires a vital component – the lightguide. This blog dives into the world of single pole and multi-pole lightguides, exploring their functionalities, advantages, and applications for UV/Visible spot light curing systems.

What are Lightguides (Liquid Light Guides)?

Lightguides, also known as liquid light guides or light wands, are flexible fiber optic cables that transmit UV or visible light from the curing lamp to the desired curing area. They offer several advantages:

  • Remote Curing: Lightguides enable curing in areas inaccessible to the lamp itself, providing greater flexibility and maneuverability.
  • Reduced Heat Transfer: The liquid core efficiently transmits light while minimizing heat transfer to the curing surface, protecting delicate materials.
  • Conformal Curing: The flexible design allows the lightguide to conform to uneven surfaces, ensuring consistent curing across the targeted area.

Single Pole vs. Multi-Pole Lightguides

Lightguides come in two main configurations:

  • Single Pole: Features a single channel for transmitting light to a single curing point. Ideal for precise, focused curing on small areas.
  • Multi-Pole: Contains multiple channels within the same housing, allowing simultaneous curing of multiple points. Offers increased efficiency for applications requiring curing in several locations.

Choosing Between Single Pole and Multi-Pole Lightguides

The optimal choice depends on your specific application:

  • Single Pole: Best suited for:
    • Curing small, intricate areas.
    • Applications requiring high-precision curing.
    • Situations where only one curing point is needed.
  • Multi-Pole: Ideal for:
    • Curing multiple points simultaneously, improving efficiency.
    • Applications requiring uniform curing across several locations with similar spacing.
    • Situations where minimizing curing time is crucial.

Benefits of Using Lightguides with UV/Visible Spot Light Curing Systems

  • Enhanced Versatility: Lightguides provide remote curing capabilities and allow for curing on uneven surfaces.
  • Improved Efficiency: Multi-pole lightguides can expedite curing processes by addressing multiple points simultaneously.
  • Precise Curing: Single pole lightguides offer focused beams for high-precision curing on small areas.
  • Reduced Heat Transfer: Liquid core minimizes heat transfer, protecting temperature-sensitive materials.
  • Wide Range of Applications: Compatible with various UV and visible light curing systems across diverse industries.

Applications for Single Pole and Multi-Pole Lightguides

The versatility of lightguides makes them ideal for numerous UV/Visible spot light curing applications:

  • Electronics Manufacturing: Curing adhesives, encapsulants, and coatings on PCBs and electronic components.
  • Medical Device Assembly: Targeted curing of adhesives and bonding materials in medical device manufacturing.
  • Composite Bonding: Curing adhesives used in composite material bonding applications.
  • 3D Printing Applications: Post-processing techniques like curing UV-curable resins for specific functionalities.
  • Optical Component Manufacturing: Precise curing of adhesives used in the assembly of optical components.
  • Automotive Applications: Curing adhesives and sealants in various automotive assembly processes.

Choosing the Right Lightguide

Selecting the optimal lightguide requires considering several factors:

  • Light Source Compatibility: Ensure the lightguide core material is compatible with the wavelength of your UV/Visible curing system.
  • Single Pole vs. Multi-Pole: Choose based on the number of curing points and desired level of precision.
  • Tip Options: Consider various tip configurations (straight, angled, etc.) to suit your specific application needs.
  • Length and Diameter: Select a length that provides sufficient reach and a diameter that allows for adequate light transmission.

Guiding You Towards Efficient Curing Solutions

Single pole and multi-pole lightguides offer valuable tools for UV/Visible spot light curing systems. Their versatility, efficiency, and ability to deliver precise light make them ideal for diverse applications across various industries. So, if you’re looking to optimize your spot light curing processes, consider incorporating the right lightguide solution and illuminate a path towards successful and efficient curing results.

INCURE Lightguides

Product Pole x Diameter x Length 
LG620 1 x 3mm x 500mm
LG622 1 x 3mm x 1000mm
LG623 1 x 3mm x 1500mm
LG624 1 x 3mm x 2000mm
LG601 1 x 5mm x 1000mm
LG602 1 x 5mm x 1500mm
LG625 1 x 5mm x 2000mm
LG626 1 x 5mm x 3000mm
LG627 1 x 8mm x 500mm
LG628 1 x 8mm x 750mm
LG603 1 x 8mm x 1000mm
LG629 1 x 8mm x 1500mm
LG630 1 x 8mm x 2000mm
LG632 1 x 8mm x 3100mm
LG633 1 x 8mm x 6200mm 
 Product Pole x Diameter x Length
LG634 (5mm Rod) 2 x 3mm x 750mm
LG604 (5mm Rod) 2 x 3mm x 1000mm
LG635 (5mm Rod) 2 x 3mm x 1500mm
LG636 (5mm Rod) 2 x 3mm x 2000mm
 Product Pole x Diameter x Length
LG605 (8mm Rod) 3 x 3mm x 1000mm
LG637 (8mm Rod) 3 x 3mm x 1500mm
 Product Pole x Diameter x Length
LG606 (8mm Rod) 4 x 3mm x 1000mm
LG638 (8mm Rod) 4 x 3mm x 1500mm
LG639 (8mm Rod) 4 x 3mm x 2000mm
Comments Off on Guiding the Way: Single Pole and Multi-Pole Lightguides for UV/Visible Spot Light Curing Systems

Demystifying Light Output: The Power of Lightguide Simulators for UV Curing Efficiency

In UV curing applications, maintaining optimal light intensity is crucial for ensuring proper cure depth and product quality. However, directly measuring the output from a lightguide – a flexible fiber optic cable used to deliver UV light – can be challenging. Here’s where lightguide simulators come in – powerful tools that shed light on the true light output of your UV curing system, independent of the lightguide itself. This blog explores the functionalities, advantages, and applications of lightguide simulators, empowering you to optimize and maintain efficient UV curing processes.

What is a Lightguide Simulator?

A lightguide simulator is a precision optical tool specifically designed to mimic the reflective properties of a lightguide. It essentially acts as a substitute for the lightguide, allowing you to directly measure the UV light output from your curing lamp. Here’s why lightguide simulators are valuable:

  • Accurate Lamp Output Measurement: By bypassing the lightguide, the simulator enables direct measurement of the UV lamp’s intensity, providing a clear picture of its true output capability.
  • Early Detection of Lamp Degradation: As UV lamps degrade over time, their light output diminishes. Lightguide simulators help detect this decrease in intensity before it negatively impacts cure quality.
  • Improved Process Control: Precise knowledge of the lamp’s output allows for adjustments to curing parameters, ensuring consistent and reliable results.
  • Reduced Production Downtime: Early detection of lamp issues through lightguide simulators helps prevent unexpected failures and costly production downtime.
  • Cost-Effective Maintenance Tool: Regular use of lightguide simulators promotes proactive maintenance and extends the life of your UV curing lamps.

Benefits of Using Lightguide Simulators for UV Curing

  • Enhanced Product Quality: Ensuring optimal light output from the lamp translates to consistent and reliable cure depth, contributing to superior product quality.
  • Improved Process Efficiency: Reduced risk of under-curing or over-curing due to precise knowledge of lamp output.
  • Optimized Maintenance Schedules: Lightguide simulators enable proactive lamp maintenance, minimizing disruptions and optimizing lamp life.
  • Reduced Operating Costs: Early detection of lamp issues prevents wasted materials and potential product rework, ultimately reducing operating costs.
  • Increased Confidence in Your UV Curing Process: Lightguide simulators provide valuable data for validation and quality control procedures.

Applications for Lightguide Simulators

Lightguide simulators are essential tools for various industries that rely on UV curing processes:

  • Electronics Manufacturing: Ensuring proper curing of adhesives, encapsulants, and coatings on PCBs and electronic components.
  • Medical Device Assembly: Maintaining consistent cure depth for adhesives and bonding materials in medical device manufacturing.
  • Printing Applications: Optimizing UV curing of inks and coatings in printing processes.
  • Optical Component Manufacturing: Precise curing of adhesives used in the assembly of optical components.
  • Automotive Applications: Maintaining consistent cure quality for adhesives and sealants in various automotive assembly processes.

Choosing the Right Lightguide Simulator

Selecting the optimal lightguide simulator requires considering several factors:

  • Compatibility with Lamp Type: Ensure the simulator is compatible with the specific UV lamp used in your curing system.
  • Wavelength Range: Choose a simulator that measures the relevant UV wavelength range for your curing application.
  • Measurement Capabilities: Consider the desired level of detail, such as basic intensity readings or advanced features like spatial distribution analysis.
  • Ease of Use: Select a simulator with a user-friendly design and clear instructions for accurate and efficient measurements.

Shine a Light on Optimized UV Curing

Lightguide simulators offer a powerful tool for UV curing efficiency. By enabling accurate lamp output measurement, they empower manufacturers to maintain optimal light intensity, ensure consistent cure quality, and ultimately achieve successful production outcomes. So, if you’re looking to optimize your UV curing processes and gain valuable insights into your lamp performance, consider incorporating lightguide simulators and illuminate a path towards a more efficient and reliable curing environment.

Incure Newgen Lightguide Simulator

5mm Lightguide Simulator (D Connector) Tests Lightguide Performance

Comments Off on Demystifying Light Output: The Power of Lightguide Simulators for UV Curing Efficiency

Sharpen Your Focus: Lightguide Terminators for Enhanced UV/Visible Spot Light Curing

In today’s fast-paced manufacturing environment, achieving precise and efficient curing is paramount. UV/Visible spot light curing systems offer a powerful solution, but maximizing their effectiveness requires proper control of the light beam. Enter lightguide terminators – specialized attachments that enhance worker safety and optimize the curing process for UV/Visible spot light curing systems. This blog sheds light on the functionalities, advantages, and diverse applications of lightguide terminators, empowering you to achieve focused and efficient curing solutions.

What are Lightguide Terminators?

Lightguide terminators are attachments specifically designed for use with liquid lightguide (also known as light wand) delivery systems in UV/Visible spot light curing applications. They connect to the distal end of the lightguide, offering several key benefits:

  • Enhanced Worker Safety: Lightguide terminators typically block ultraviolet (UV) light below a certain wavelength (e.g., 340 nm), minimizing exposure for workers and protecting them from potential UV-related hazards.
  • Improved Beam Collimation: Certain terminators can collimate the light beam, focusing it into a tighter spot size for more precise curing on targeted areas.
  • Reduced Glare: Terminators often help to reduce stray light and glare emanating from the lightguide tip, improving worker comfort and visibility during the curing process.
  • Application Versatility: Available in various configurations with different angles (e.g., 60°, 90°) and functionalities to cater to specific application needs.

Benefits of Using Lightguide Terminators with UV/Visible Spot Light Curing Systems

  • Enhanced Worker Safety: Reduced UV exposure promotes a safer working environment.
  • Improved Curing Precision: Focused light beams enable more accurate and efficient curing of targeted areas.
  • Reduced Risk of Over-Curing: Precise light control minimizes the potential for unintended curing of adjacent areas.
  • Increased Productivity: Faster and more targeted curing can contribute to improved production efficiency.
  • Enhanced Process Control: Certain terminators offer features like distance sensors to optimize curing parameters.

Applications for Lightguide Terminators with UV/Visible Spot Light Curing Systems

The versatility of lightguide terminators makes them ideal for various applications across diverse industries:

  • Electronics Manufacturing: Precise curing of adhesives, encapsulants, and coatings on PCBs and electronic components.
  • Medical Device Assembly: Targeted curing of adhesives and bonding materials in medical device manufacturing.
  • Composite Bonding: Curing adhesives used in composite material bonding applications.
  • 3D Printing Applications: Post-processing techniques like curing UV-curable resins for specific functionalities.
  • Optical Component Manufacturing: Precise curing of adhesives used in the assembly of optical components.
  • Automotive Applications: Curing adhesives and sealants in various automotive assembly processes.

Choosing the Right Lightguide Terminator

Selecting the optimal lightguide terminator requires considering several factors:

  • Light Source Compatibility: Ensure the terminator is compatible with the wavelength of your UV/Visible spot light curing system.
  • Desired Beam Profile: Choose a terminator with the appropriate angle (e.g., straight, angled) and collimation capabilities to achieve the desired curing spot size.
  • Worker Safety Features: Prioritize terminators that offer adequate UV blocking capabilities for worker protection.
  • Application Requirements: Consider the specific curing needs of your application, such as the need for distance sensors or other functionalities.

Shine a Light on Focused Curing Solutions

Lightguide terminators offer a valuable addition to UV/Visible spot light curing systems. By enhancing worker safety, improving curing precision, and streamlining processes, they empower manufacturers to achieve focused and efficient curing solutions. So, if you’re looking to optimize your UV/Visible spot light curing operations, consider incorporating lightguide terminators and illuminate a path towards a safer, more precise, and productive curing environment.

Incure NewGen Lightguide Terminators for UV/Visible Spot Light Curing Systems

60° Lightguide Terminator (5mm) for Precise UV Spot Curing Applications

90° Lightguide Terminator (5mm) for Precise UV Spot Curing Applications

60° Lightguide Terminator (8mm) for Precise UV Spot Curing Applications

90° Lightguide Terminator (8mm) for Precise UV Spot Curing Applications

Comments Off on Sharpen Your Focus: Lightguide Terminators for Enhanced UV/Visible Spot Light Curing

Shine a Light on Protection: Light Curable Peelable Masks for Surface Protection and Parts Handling Assembly

In the world of manufacturing, protecting delicate surfaces and ensuring clean part handling are crucial for maintaining quality and efficiency. Traditional masking methods often involve tapes, films, or liquid coatings, which can be cumbersome, leave residue, or damage surfaces. Enter light curable peelable masks – a revolutionary solution offering a cleaner, faster, and more precise approach to surface protection and parts handling assembly. This blog explores the functionalities, advantages, and diverse applications of light curable peelable masks, empowering you to shed light on a brighter path to successful manufacturing.

What are Light Curable Peelable Masks?

Light curable peelable masks are specialized liquid coatings formulated for temporary surface protection. Here’s what sets them apart:

  • Light Activated Curing: Exposure to ultraviolet (UV) light triggers rapid polymerization, creating a protective film on the desired surface within seconds or minutes.
  • Clean and Residue-Free Removal: Cured masks peel away cleanly upon removal, leaving no residue or damage to the underlying surface.
  • Precise Application: The liquid form allows for targeted application, protecting only the necessary areas while leaving other parts accessible.
  • Conformal Coating: The material fills even the most intricate gaps and contours, ensuring complete and consistent surface protection.
  • Versatility: Available in various formulations with different properties like thickness, flexibility, and chemical resistance to cater to specific application needs.

Benefits of Light Curable Peelable Masks

Light curable peelable masks offer numerous advantages over traditional masking methods:

  • Improved Efficiency: Rapid curing times significantly reduce masking and de-masking processes compared to tapes and films.
  • Enhanced Surface Protection: Conformal coating creates a complete barrier, protecting surfaces from scratches, abrasions, and other contaminants.
  • Reduced Risk of Damage: Clean peelability eliminates the risk of surface damage often associated with removing tapes or films.
  • Streamlined Parts Handling: Precise application allows for easy handling of delicate parts without compromising protection.
  • Increased Productivity: Faster masking and de-masking processes contribute to overall production line efficiency.

Applications for Light Curable Peelable Masks

The versatility and protective properties of light curable peelable masks make them ideal for various surface protection and parts handling applications in diverse industries:

  • Electronics Manufacturing: Protecting sensitive components like printed circuit boards (PCBs) during soldering, assembly, and cleaning processes.
  • Aerospace Manufacturing: Safeguarding critical aircraft parts from contamination and damage during assembly and painting.
  • Medical Device Manufacturing: Ensuring sterility and protecting delicate surfaces of medical devices during manufacturing and packaging.
  • Automotive Manufacturing: Protecting painted surfaces, polished components, and windshields during assembly and transportation.
  • Optical Component Manufacturing: Shielding lenses, prisms, and other optical components from scratches and dust during handling and assembly.
  • 3D Printing Applications: Protecting printed parts from support structures and facilitating post-processing procedures.

Choosing the Right Light Curable Peelable Mask

Selecting the optimal light curable peelable mask requires considering several factors:

  • Surface Compatibility: Ensure the chosen mask material adheres well to the specific surface you are protecting.
  • Desired Protection Level: Choose a mask thickness and formulation that offers the necessary protection against scratches, chemicals, or other environmental factors.
  • Curing Speed: Select a curing speed that aligns with your production workflow for optimal efficiency.
  • Light Source Compatibility: Ensure the mask is compatible with the wavelength of your UV curing lamp.
  • Peelability: Consider the desired ease of peelability based on the application’s needs.

Embrace a Brighter Future with Light Curable Peelable Masks

Light curable peelable masks offer a game-changing solution for surface protection and parts handling assembly. Their rapid curing, clean removal, and precise application capabilities streamline processes, enhance surface protection, and contribute to improved manufacturing efficiency. So, if you’re looking to illuminate a path towards a cleaner, faster, and more reliable approach to surface protection, consider incorporating light curable peelable masks into your manufacturing operations and experience the illuminating difference.

Incure Litemask™ Series Core Products

Incure Litemask™ 4201: Aerospace UV/Visible/Heat Cure Masking (Metal/Glass/Ceramic) – Low Shrink, High Strength.

Incure Litemask™ 4272: Aerospace UV/Vis/Heat Cure Masking (Metal/Glass/Ceramic) – Ultra-Low Shrink, High Strength.

Incure Litemask™ 4153: Ultra-Clear UV/Vis/LED Cure Metal Masking (Jewelry) – Blasts, High Strength, Easy Burn-Off.

Incure Litemask™ 3148: Ultra-Clean Peelable Mask: Protects Surfaces During Manufacturing (Chemical/Scratch Resistant).

Incure Litemask™ 1123G: High-viscosity, Clear Peelable Mask – Protects Parts (Solder/Sandblast) – Easy Hot Water Removal.

Incure Litemask™ 4139: UV/Vis/Heat Cure Masking (Aerospace) – Protects Turbine Blades (Chemical Resistant).

Incure Litemask™ 4139G: Aerospace UV/Vis/Heat Cure Masking (Turbine Blades) – Superior Chemical Resistance.

Incure Litemask™ 8177G: Ultra-Clean Gel Mask (Electronics/Aerospace) – High Temp, Chemical & Burn Protection (Peelable).

Incure Litemask™ 8114VT: High-viscosity, Clean Peel Mask (Electronics/Aerospace) – High Temp, Chemical & Burn Protection.

Incure Litemask™ 8188G: Ultra-Clean Gel Mask (Electronics/Aerospace) – High Temp, Chemical & Burn Resist, Easy Peel.

Above products are available in thicker versions: 
T (Thick), VT (Very Thick), G (Gel)

Package Size:
10 ml syringe / 30 ml syringe / 30 ml squeeze bottle / 100 ml squeeze bottle / 250 ml squeeze bottle / 1 kg Bottle / 1 Gallon Pail / 2 Gallon Pail / 5 Gallon Pail

Looking for a Temporary, Peelable Protective Layer for your Electronics? Incure’s UV Peelable Masks offer a Convenient and Effective Solution for Protecting Sensitive Components during Manufacturing, Assembly, and Shipping. Our High-Quality Masks are Easy to Apply, provide Excellent Protection against Scratches, Dust, and other Contaminants, and can be Easily Peeled Off when no longer needed.

Shop Now or Contact Us to learn more. Explore the full range of Incure solutions at www.incurelab.com

Comments Off on Shine a Light on Protection: Light Curable Peelable Masks for Surface Protection and Parts Handling Assembly

Shine On: UV Glass Bonding Adhesives for Seamless Glass and Industrial Assembly

Glass, with its elegance and durability, is a popular material across various industries. However, traditional assembly methods involving mechanical fasteners or messy epoxies can be time-consuming, affect aesthetics, and introduce stress points. Enter UV glass bonding adhesives – a revolutionary solution offering a faster, cleaner, and stronger approach to glass assembly for industrial applications. This blog dives into the world of UV glass bonding adhesives, exploring their functionalities, advantages, and diverse applications for achieving flawless glass assemblies.

What are UV Glass Bonding Adhesives?

UV glass bonding adhesives are specialized liquid formulations that cure upon exposure to ultraviolet (UV) light. Here’s what makes them ideal for glass assembly:

  • Rapid Curing: Exposure to UV light triggers fast polymerization, creating a strong bond between glass components within seconds or minutes. This significantly reduces assembly times compared to traditional methods.
  • Crystal Clear Bond: Cured UV adhesives are virtually transparent, maintaining the visual clarity of the glass assembly.
  • Conformal Coating: The liquid form fills even the most intricate gaps and contours between glass pieces, ensuring a seamless and aesthetically pleasing bond line.
  • Strong and Durable Bonds: Cured UV adhesives form high-strength bonds that can withstand various environmental stresses, including moisture, vibration, and thermal cycling.
  • Versatility: Available in various formulations with different viscosities and properties to cater to specific application needs, such as flexibility or high-temperature resistance.

Benefits of UV Glass Bonding Adhesives for Industrial Assembly

UV glass bonding adhesives offer significant advantages over traditional glass assembly methods:

  • Increased Throughput: Fast curing times significantly expedite assembly processes compared to heat-cured epoxies, boosting production efficiency.
  • Enhanced Aesthetics: Eliminates the need for visible fasteners, creating a clean and visually seamless glass assembly.
  • Improved Strength and Durability: Strong bonds with minimal stress points enhance the overall strength and reliability of the glass assembly.
  • Simplified Application: One-part formulations eliminate the need for complex mixing procedures, promoting ease of use.
  • Reduced Environmental Impact: UV curing eliminates the need for heat, reducing energy consumption compared to traditional methods. Certain formulations offer low VOC emissions.

Applications for UV Glass Bonding Adhesives

The versatility and efficiency of UV glass bonding adhesives make them ideal for various industrial assembly applications involving glass:

  • Electronics Manufacturing: Bonding touch screens, display covers, and other glass components in electronic devices.
  • Consumer Goods: Assembling glass shelves, furniture components, and decorative glass items.
  • Architectural Applications: Bonding glass panels in partitions, doors, and other architectural elements.
  • Medical Devices: Assembling glass components in medical devices requiring high precision and sterility.
  • Optical Applications: Bonding lenses, prisms, and other optical components for superior light transmission.
  • Appliance Manufacturing: Securing glass panels in appliances for a sleek and modern aesthetic.

Choosing the Right UV Glass Bonding Adhesive

Selecting the optimal UV glass bonding adhesive requires considering several factors:

  • Substrate Compatibility: Ensure the adhesive adheres well to the specific types of glass being bonded.
  • Desired Bond Strength: Choose an adhesive with the necessary strength to withstand the expected loads and stresses.
  • Environmental Conditions: Consider factors like temperature, moisture, and chemical exposure to select an adhesive with appropriate resistance.
  • Desired Light Source Compatibility: Ensure the adhesive is compatible with the wavelength of your UV curing lamp.
  • Viscosity: Select a viscosity suitable for your application. Lower viscosity adhesives are ideal for tight-fitting joints, while higher viscosities are better for filling gaps.

Embrace a Brighter Future with UV Glass Bonding Adhesives

UV glass bonding adhesives offer a powerful and efficient solution for industrial glass assembly. Their rapid curing, superior aesthetics, and strong bond characteristics make them a compelling choice for manufacturers seeking to streamline production, enhance product design, and achieve long-lasting glass assemblies. So, if you’re looking for a way to elevate your glass assembly processes, consider incorporating UV glass bonding adhesives and unlock a world of brilliant possibilities.

Incure Quad-cure™ Series Core Products - Glass, Crystals

Incure Quad-cure™ 1931: UV/Visible/Heat Cure Bonder (Metals/Glass/Ceramics) – High Strength, Low Shrink (Weatherproof, Temp/Moisture Resist)

Incure Quad-cure™ 1933: Multi-Cure (UV/LED/Heat) Bonder (Metals/Glass) – High Strength, Tack-Free, Temp/Moisture Resist

Incure Quad-cure Series Core Products - Glass + Metal)

Incure Quad-cure™ 9254: UV/Visible/Heat Cure Bonder (Metals/Glass) – High Strength (Mid Viscosity, Low Shrink, Vibration Damping)

Incure Quad-cure™ 9263: UV/Visible/Heat Cure Bonder (Metals/Glass) – High Strength (Low Viscosity, Low Shrink, Vibration Damping)

Incure Quad-cure™ 9245: UV/Visible/Heat Cure Bonder (Metals/Glass) – High Strength (High Viscosity, Low Shrink, Vibration Damping)

Incure MG: Multi-Cure (UV/Visible/Heat) Metal/Glass Bonder (High Strength, Gap Filling, Vibration Damping)

Incure Quad-cure™ 1922: Multi-Cure (UV/LED/Heat) Bonder (Metals/Glass/Ceramics) – High Strength, Low Shrink (Weatherproof, Temp/Moisture Resist)

Incure Uni-Weld Series Core Products - Glass + Metal + Plastic

Incure Uni-Weld™ 1203: Tack-Free UV Bonder (High Strength) – Metals/Glass/Ceramics (Low Shrink, Temp/Moisture Resist, Vibration Damping)

Incure Uni-Weld™ 1238: High Strength UV Bonder (Metals/Glass) – Fast Cure, Low Shrink/Water Absorp. (Ideal for Stainless Steel/Glass)

Incure Uni-Weld™ 1471: Industrial UV Bonder (Very Low Viscosity, High Strength) – Multi-Substrate (Differs Hardness)

Package Size: 10 ml syringe / 30 ml syringe / 30 ml squeeze bottle / 100 ml squeeze bottle / 250 ml squeeze bottle / 1 kg Bottle / 1 Gallon Pail / 2 Gallon Pail / 5 Gallon Pail

Comments Off on Shine On: UV Glass Bonding Adhesives for Seamless Glass and Industrial Assembly

Building with Strength: High-Performance Metal Adhesives for Metal Bonding

In the realm of metal fabrication and assembly, achieving a strong, permanent bond is paramount. Traditional methods like welding and riveting have served their purpose, but they come with limitations. Enter high-performance metal adhesives – a revolutionary solution offering exceptional strength, versatility, and a streamlined bonding process. This blog delves into the world of high-performance metal adhesives, exploring their advantages, functionalities, and diverse applications for robust metal bonding.

Why Choose High-Performance Metal Adhesives?

High-performance metal adhesives offer numerous advantages over traditional joining methods:

  • Strong and Reliable Bonds: These adhesives can create bonds that rival the strength of welds, ensuring long-lasting and secure metal connections.
  • Versatility: Metal adhesives can bond a wide range of metals, including dissimilar metals that are difficult or impossible to weld.
  • Uniform Stress Distribution: Adhesives distribute stress more evenly across the bonded area compared to welds, potentially reducing the risk of stress concentrations and fractures.
  • Sealing and Gap Filling: Certain adhesives can fill gaps and imperfections between metal surfaces, creating a watertight and airtight seal.
  • Lightweight and Streamlined Assembly: Adhesives eliminate the need for heat and bulky equipment, simplifying the assembly process and reducing weight in structures.
  • Reduced Distortion: Metal bonding with adhesives minimizes heat distortion compared to welding, preserving the dimensional integrity of components.

Types of High-Performance Metal Adhesives

Several types of high-performance metal adhesives cater to different bonding needs:

  • Epoxy Adhesives: Two-part epoxies offer exceptional strength, chemical resistance, and versatility, making them suitable for a wide range of metal bonding applications.
  • Anaerobic Adhesives: These one-part adhesives cure in the absence of air, ideal for filling gaps and bonding tight-fitting metal parts.
  • Acrylic Adhesives: Known for their fast curing speeds, flexibility, and good strength, acrylic adhesives are well-suited for bonding dissimilar metals or applications requiring some degree of joint movement.
  • Structural Acrylic Adhesives: A high-strength variation of acrylic adhesives, offering exceptional bond strength and durability for demanding applications.
  • Cyanoacrylate Adhesives (Super Glues): Fast-curing and well-suited for small parts, super glues require careful application due to their rapid setting time.

Applications for High-Performance Metal Adhesives

The versatility and strength of high-performance metal adhesives make them ideal for various applications in diverse industries:

  • Automotive Assembly: Bonding body panels, spoilers, and interior components for a lightweight and streamlined design.
  • Aerospace Manufacturing: Creating strong and reliable bonds in aircraft structures where weight reduction is crucial.
  • Construction: Adhering metal panels, cladding systems, and other building components.
  • Appliance Manufacturing: Bonding metal parts in appliances like refrigerators, dishwashers, and washing machines.
  • Electronics Manufacturing: Securing heat sinks, EMI shielding components, and other metal parts in electronic devices.
  • Metal Fabrication: Joining dissimilar metals, filling gaps, and creating leak-proof seals in various metal structures.

Choosing the Right High-Performance Metal Adhesive

Selecting the optimal adhesive for your application requires considering several factors:

  • Substrate Compatibility: Ensure the adhesive is formulated for the specific metals you are bonding.
  • Strength Requirements: Choose an adhesive with the necessary bond strength to withstand the expected loads and stresses.
  • Environmental Conditions: Consider factors like temperature, moisture, and chemical exposure to select an adhesive with appropriate resistance.
  • Desired Working Time: Choose an adhesive with an open time (working time) that allows for proper positioning and manipulation of parts before curing commences.
  • Curing Speed: Select a curing speed that aligns with your production workflow. Some applications require fast-curing adhesives for high throughput, while others may benefit from slower curing times for precise positioning.

Embrace a New Era of Metal Bonding

High-performance metal adhesives offer a game-changing solution for metal fabrication and assembly. Their exceptional strength, versatility, and ability to create lightweight, stress-resistant bonds make them a compelling choice across diverse industries. So, if you’re looking for a reliable and innovative way to join metals, consider incorporating high-performance metal adhesives into your toolbox and empower your creations with lasting strength.

Comments Off on Building with Strength: High-Performance Metal Adhesives for Metal Bonding

Bridging the Gap: Effective Bonding of Thermoplastic Elastomers (TPEs) for Medical Devices

The world of medical devices demands both functionality and patient safety. Thermoplastic elastomers (TPEs) offer distinct advantages – flexibility, biocompatibility, and recyclability – making them a compelling choice for various medical device components. However, bonding TPEs to connectors can be a challenge. This blog dives into the world of bonding TPEs for medical devices, exploring the challenges, solutions, and best practices to achieve secure and reliable connections.

Why Use TPEs in Medical Devices?

TPEs offer numerous benefits for medical device applications:

  • Enhanced Patient Comfort: TPEs provide a soft, pliable feel, improving patient comfort during device use.
  • Biocompatibility: Many TPEs are biocompatible, minimizing the risk of adverse tissue reactions.
  • Durability and Flexibility: TPEs offer good durability and flexibility, making them ideal for applications requiring both strength and adaptability.
  • Recyclability: Certain TPEs are recyclable, contributing to a more sustainable manufacturing process.

Challenges of Bonding TPEs

Despite their advantages, bonding TPEs to connectors can be challenging due to:

  • Low Surface Energy: TPEs often have a low surface energy, making it difficult for adhesives to adhere effectively.
  • Chemical Resistance: Certain TPE formulations possess good chemical resistance, which can hinder adhesive bonding.

Solutions for Effective TPE Bonding

Fortunately, solutions exist to overcome these challenges and achieve secure bonding of TPEs to connectors in medical devices:

  • Surface Pretreatment: Techniques like plasma treatment or chemical etching can increase the surface energy of TPEs, improving adhesion.
  • Primer Application: Primers create a compatible layer between the TPE and the adhesive, enhancing bond strength.
  • Adhesive Selection: Specific adhesives formulated for low surface energy materials like TPEs offer superior bond strength and performance. These may include:
    • Cyanoacrylate Adhesives (Super Glues): Fast-curing and well-suited for small parts, but require careful application due to their rapid setting time.
    • Epoxy Adhesives: Two-part epoxies provide excellent strength and chemical resistance, making them ideal for demanding applications.
    • Polyurethane Adhesives: Offer good flexibility and durability, suitable for applications requiring some degree of joint movement.

Best Practices for Bonding TPEs in Medical Devices

  • Material Compatibility: Ensure compatibility between the chosen TPE, adhesive, and connector material.
  • Surface Preparation: Thorough cleaning and appropriate surface pretreatment are crucial for optimal adhesion.
  • Adhesive Selection: Select an adhesive specifically designed for bonding TPEs, considering factors like curing speed, strength requirements, and regulatory compliance for medical devices.
  • Controlled Application: Follow the adhesive manufacturer’s instructions for proper application and curing procedures.
  • Testing and Validation: Conduct thorough testing to validate the bond strength and performance of the chosen bonding method for your specific application.

Embrace Secure Connections with Effective TPE Bonding

By understanding the challenges and implementing the solutions discussed above, manufacturers can achieve reliable and durable bonding of TPEs to connectors in medical devices. This ensures optimal functionality, patient comfort, and device performance in critical medical applications. So, explore the possibilities of TPEs in your medical device designs and leverage effective bonding techniques to bridge the gap between materials and create innovative solutions that improve patient care.

Incure Cyro-Weld Series Core Products - TPE Adhesives

Incure Cyro-Weld™ 5480: Ultra-Fast UV/Visible Light Curing, Medical-Grade, Low Viscosity Adhesive for High-Strength Bonding of Plastics.

Incure Cyro-Weld™ 5300F: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Acid-Free, Multi-Substrate Adhesive for High-Clarity, Fluorescing Bonding.

Incure Cyro-Weld™ 5021F: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Acid-Free, Multi-Substrate Adhesive for High-Clarity, Needle Bonding.

Incure Cyro-Weld™ 5422F: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Acid-Free, Multi-Substrate Adhesive for High-Strength, Fluorescing Needle Bonding.

Incure Cyro-Weld™ 5463: Ultra-Fast UV/Visible Light Curing, Medical-Grade, Medium Viscosity Adhesive for High-Strength Bonding of Plastics.

Incure Cyro-Weld™ 5422T: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Medium Viscosity Adhesive for High-Strength, Tack-Free Needle Bonding with High Elongation.

Incure Cyro-Weld™ 5422VT: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Medium-High Viscosity Adhesive for Extremely High-Strength Bonding of Dissimilar Substrates with Vibration Isolation.

Incure Cyro-Weld™ 5459: Ultra-Fast UV/Visible/LED Curing, Medical-Grade, Medium Viscosity Adhesive for High-Strength Needle Bonding with High Elongation.

Package Size: 10 ml syringe / 30 ml syringe / 1 kg Bottle

Above products are available in other Viscosities versions:
T (Thick), VT (Very Thick), G (Gel), S (Special Viscosity)

Comments Off on Bridging the Gap: Effective Bonding of Thermoplastic Elastomers (TPEs) for Medical Devices

Seal the Deal: Light-Curable Form-In-Place (FIP) & Cure-In-Place (CIP) Gaskets for Industrial Assembly

In the fast-paced world of industrial assembly, efficiency and reliability reign supreme. Traditional gasketing methods, like pre-cut gaskets and messy adhesives, can be time-consuming and prone to errors. Enter Light-Curable Form-In-Place (FIP) & Cure-In-Place (CIP) Gaskets – a revolutionary solution that streamlines assembly processes and ensures secure, leak-proof seals. This blog delves into the world of light-curable FIP/CIP gaskets, exploring their functionalities, advantages, and diverse applications in industrial settings.

What are Light-Curable FIP/CIP Gaskets?

Light-Curable FIP/CIP gaskets are innovative liquid sealants that eliminate the need for pre-cut gaskets. Here’s what sets them apart:

  • On-Demand Dispensing: The liquid form allows for precise application directly onto the assembly surfaces, eliminating the need for pre-cut gaskets and minimizing waste.
  • Rapid Curing: Exposure to UV light triggers rapid polymerization, creating a strong, durable seal within seconds or minutes, significantly reducing assembly time.
  • Conformable Sealing: The liquid form fills even the most intricate gaps and contours, ensuring a tight and reliable seal.
  • Versatility: Available in various formulations to adhere to different materials and withstand diverse environmental conditions.
  • Self-Leveling Properties: Certain FIP/CIP gaskets self-level, simplifying application and ensuring a uniform seal thickness.

Benefits of Light-Curable FIP/CIP Gaskets

Light-Curable FIP/CIP gaskets offer numerous advantages over traditional gasketing methods:

  • Increased Efficiency: On-demand application and rapid curing significantly reduce assembly times and labor costs.
  • Improved Precision: Precise dispensing eliminates misalignment issues common with pre-cut gaskets, leading to more reliable seals.
  • Reduced Waste: Eliminates the need for pre-cut gaskets and minimizes the risk of incorrect size selection, reducing material waste.
  • Enhanced Design Flexibility: FIP/CIP gaskets can be applied to complex geometries, offering greater design freedom compared to pre-cut options.
  • Durable and Leak-Proof Seals: Cured FIP/CIP gaskets form strong, long-lasting seals that resist various environmental conditions, minimizing the risk of leaks.

Applications for Light-Curable FIP/CIP Gaskets

The versatility and efficiency of FIP/CIP gaskets make them ideal for a wide range of industrial assembly applications:

  • Electronics Manufacturing: Seal enclosures, protect delicate components from dust and moisture.
  • Automotive Assembly: Securely seal engine components, lights, and other parts.
  • Appliance Manufacturing: Create leak-proof seals in appliances like refrigerators, dishwashers, and washing machines.
  • Medical Device Assembly: Ensure secure and sterile seals in medical devices.
  • Aerospace Applications: Withstand demanding environments and create reliable seals in aerospace components.

Choosing the Right Light-Curable FIP/CIP Gasket

Selecting the optimal FIP/CIP gasket requires considering several factors:

  • Substrate Compatibility: Ensure the chosen gasket material adheres well to the specific surfaces being sealed.
  • Environmental Conditions: Select a gasket formulation that can withstand the expected temperature, pressure, and chemical exposure.
  • Desired Seal Characteristics: Consider factors like flexibility, compression set, and chemical resistance based on the application needs.
  • Curing Speed: Choose a curing speed that aligns with your production line throughput for optimal efficiency.
  • Application Method: Determine if manual or automated dispensing is required, and select a FIP/CIP gasket with the appropriate viscosity.

Embrace Efficiency and Reliability with Light-Curable FIP/CIP Gaskets

Light-Curable FIP/CIP gaskets offer a game-changing solution for industrial assembly. Their on-demand application, rapid curing, and conformable sealing capabilities streamline assembly processes and ensure reliable, leak-proof seals. So, if you’re looking to boost your production efficiency, minimize waste, and achieve superior sealing performance, consider incorporating Light-Curable FIP/CIP Gaskets into your assembly line and experience the future of gasketing technology.

Incure Uni-Seal™ Series Core Products

Incure Uni-Seal™ 1822: Low-viscosity adhesive & sealant – seals & bonds (multiple substrates), low shrinkage, waterproof, air-tight, vibration dampening

Incure Uni-Seal™ 6322: Low-viscosity, ultra-flexible gasket outperforms many – air-tight seal, high memory, various colors

Incure Uni-Seal™ 3393: Low-viscosity electronics sealant – air-tight, peelable, tough & flexible (low CTE) – ideal for rework (automotive, electronics)

Incure Uni-Seal™ 6213: Low-cost, low-viscosity potting compound for electronics – ultra-low shrinkage, waterproof, chemical resistant

Incure Uni-Seal™ 3718F: Fast-cure flexible encapsulant for electronics (bonds multiple substrates) – secondary heat cure for shadow areas

Incure Uni-Seal™ 3393VT: Thick electronics sealant – air-tight, peelable, tough & flexible (low CTE) – ideal for rework (automotive, electronics)

Incure Uni-Seal™ 3393GB: Black gel electronics sealant – air-tight, peelable, tough & flexible (low CTE) – ideal for rework (automotive, electronics)

Above products are available in thicker versions:
T (Thick), VT (Very Thick), G (Gel) 

Package Size:
10 ml syringe / 30 ml syringe / 30 ml squeeze bottle / 100 ml squeeze bottle / 250 ml squeeze bottle / 1 kg Bottle / 1 Gallon Pail / 2 Gallon Pail / 5 Gallon Pail

Comments Off on Seal the Deal: Light-Curable Form-In-Place (FIP) & Cure-In-Place (CIP) Gaskets for Industrial Assembly

Shielding Innovation: UV Light Curable Encapsulants for Microelectronic Assembly and IC Protection

Microelectronics are the building blocks of modern technology, powering everything from smartphones to medical devices. Protecting these delicate components during assembly and throughout their lifespan is crucial for ensuring device reliability. This blog explores UV light curable encapsulants, a revolutionary solution for microelectronic assembly and integrated circuit (IC) protection.

What are UV Light Curable Encapsulants?

UV light curable encapsulants are specialized liquid materials that solidify upon exposure to ultraviolet (UV) light. Here’s what makes them ideal for microelectronics:

  • Fast Curing: Exposure to UV light triggers rapid polymerization, creating a protective layer around the microelectronic components within seconds or minutes. This expedites assembly processes compared to traditional methods.
  • Conformal Coating: The liquid form fills even the most intricate gaps and contours on the microelectronic components, providing a seamless and complete encapsulation.
  • Excellent Protection: Cured encapsulants offer superior protection against moisture, contamination, mechanical stress, and environmental factors that can damage delicate electronic components.
  • Transparent and Low Outgassing: Encapsulants are typically clear, allowing for easy visual inspection of components. They also exhibit minimal emission of volatile organic compounds (VOCs) during curing, minimizing potential harm to components.
  • Variety of Formulations: Available in various viscosities and with different properties to cater to specific needs, such as thermal conductivity or flame retardancy.

Benefits of UV Light Curable Encapsulants for Microelectronics

UV light curable encapsulants offer significant advantages over traditional encapsulation methods:

  • Increased Throughput: Fast curing times significantly reduce assembly times compared to heat-cured epoxies, boosting production efficiency.
  • Improved Quality Control: Rapid curing minimizes the risk of component damage from prolonged exposure to heat.
  • Enhanced Reliability: Superior protection against environmental factors leads to more reliable and longer-lasting microelectronic devices.
  • Simplified Processing: One-part formulations eliminate the need for complex mixing procedures, simplifying application.
  • Environmentally Friendly: UV curing reduces energy consumption compared to heat-curing methods. Certain formulations offer low VOC emissions.

Applications for UV Light Curable Encapsulants

The versatility and protective properties of UV light curable encapsulants make them ideal for various microelectronic assembly and IC protection applications:

  • Chip-on-Board (COB) Assembly: Encapsulate delicate electronic components directly onto printed circuit boards (PCBs).
  • Ball Grid Array (BGA) Encapsulation: Protect BGA packages used in high-density electronic devices.
  • Underfill Applications: Fill microscopic gaps between ICs and PCBs to improve thermal performance and prevent electrical shorts.
  • Sensor Protection: Encapsulate sensitive sensors used in various devices for enhanced environmental protection.
  • IC Protection in Harsh Environments: Provide robust protection for ICs used in demanding environments like automotive or industrial applications.

Choosing the Right UV Light Curable Encapsulant

Selecting the optimal UV light curable encapsulant requires considering several factors:

  • Substrate Compatibility: Ensure the encapsulant adheres well to the specific materials used in the microelectronic assembly.
  • Desired Properties: Consider factors like viscosity, thermal conductivity, flame retardancy, and moisture resistance based on the application needs.
  • Curing Speed: Choose a curing speed that aligns with your production line throughput for optimal efficiency.
  • Light Source Compatibility: Ensure the encapsulant is compatible with the wavelength of your UV curing lamp.

Embrace Efficiency and Protection with UV Light Curable Encapsulants

UV light curable encapsulants offer a powerful and efficient solution for microelectronic assembly and IC protection. Their fast curing speeds, conformal coating capabilities, and superior protection properties make them a compelling choice for manufacturers of innovative electronic devices. So, if you’re looking to streamline your assembly process, enhance device reliability, and ensure superior protection for your microelectronics, consider incorporating UV light curable encapsulants and empower your technology to thrive.

Incure Encap™ Series Core Products

Incure Encap™ 3522: Low-viscosity, clear UV encapsulant (300-4,500µm) – hard, sleek, water-resistant protection for components.

Incure Encap™ 3555: Fast-curing, clear encapsulant for electronics – ultra-low stress, light transmission, moisture & temperature resistant, flexible circuit safe.

Package Size: 10 ml syringe / 30 ml syringe / 30 ml squeeze bottle / 100 ml squeeze bottle / 250 ml squeeze bottle / 1 kg Bottle / 1 Gallon Pail / 2 Gallon Pail / 5 Gallon Pail

Comments Off on Shielding Innovation: UV Light Curable Encapsulants for Microelectronic Assembly and IC Protection

Plastic Glue: Plastic Bonding Adhesives for PVC and Industrial Assembly

 

In the world of industrial assembly, strong and reliable bonds are the cornerstone of success. For PVC and a wide range of industrial plastics, choosing the right adhesive is crucial. This blog delves into the world of plastic bonding adhesives, exploring their functionalities, advantages, and the factors to consider when selecting the ideal solution for your PVC and industrial plastic assembly needs.

Understanding Plastic Bonding Adhesives

Plastic bonding adhesives are specially formulated glues designed to create strong, permanent bonds between various plastic materials. Unlike mechanical fasteners, adhesives offer several advantages:

     

      • Smooth and Seamless Joints: Adhesives eliminate the need for drilling or rivets, resulting in a smooth and aesthetically pleasing finished product.

      • Stress Distribution: Adhesives distribute stress more evenly across the bonded area, potentially reducing the risk of stress points and fractures compared to mechanical fasteners.

      • Bonding Dissimilar Materials: Certain adhesives can effectively bond different types of plastics, creating strong joints even between dissimilar materials.

      • Fast Curing Speeds: Many adhesives offer rapid curing times, expediting assembly processes and improving production efficiency.

    Ideal Adhesives for PVC and Industrial Plastics

    When selecting an adhesive for PVC and industrial plastics, several factors come into play:

       

        • Material Compatibility: Ensure the adhesive is specifically formulated for bonding the type of PVC or industrial plastic you’re using. This is crucial for achieving optimal bond strength and performance.

        • Application Requirements: Consider the desired bond strength, flexibility, and environmental resistance needed for your specific application. Different adhesives cater to varying requirements.

        • Desired Working Time: Choose an adhesive with an open time (working time) that allows for proper positioning and manipulation of parts before curing commences.

        • Curing Speed: Select a curing speed that aligns with your production workflow. Some applications require fast-curing adhesives for high throughput, while others may benefit from slower curing times for precise positioning.

        • Application Method: Consider the available application methods (e.g., brush, spray) and choose an adhesive that aligns with your production setup.

      Common Types of Plastic Bonding Adhesives for PVC and Industrial Plastics

         

          • Solvent Cements: These strong adhesives dissolve the plastic surfaces slightly, creating a permanent and virtually invisible bond upon drying. Ideal for PVC pipes and fittings.

          • Epoxy Adhesives: Two-part epoxies offer excellent strength, chemical resistance, and versatility, making them suitable for a wide range of industrial plastic bonding applications.

          • Cyanoacrylate Adhesives (Super Glues): Fast-curing and user-friendly, super glues provide a strong bond for many plastics, but require careful application due to their rapid setting time.

          • Acrylic Adhesives: These versatile adhesives offer good bond strength, clarity, and flexibility, making them suitable for various PVC and plastic bonding applications.

          • Polyurethane Adhesives: Known for their flexibility and durability, polyurethane adhesives are ideal for bonding dissimilar materials and applications requiring some degree of joint movement.

        Embrace Strong and Reliable Bonds with the Right Plastic Bonding Adhesive

        Selecting the right plastic bonding adhesive for PVC and industrial plastics is crucial for achieving long-lasting and reliable assemblies. By considering the factors mentioned above and exploring the various adhesive types available, you can ensure a perfect bond for your specific needs. So, ditch the drill and explore the world of plastic bonding adhesives to unlock a new level of efficiency and strength in your PVC and industrial plastic assembly projects.

        Incure Uni-Weld™ Series Core Products - PVC

        Incure Uni-Weld™ 1013: Industrial UV Bonder (High Strength) – Ultem, PVC & Multi-Plastics

        Incure Uni-Weld™ 1465: Tack-Free Cure UV Bonder (Multi-Material) – Precision Optics, Low Shrinkage (Metals/Glass/Ceramics/Plastics)

        Incure Uni-Weld™ 5942VT: Industrial UV Bonder (High Viscosity, Low Shrink) – Multi-Material (Plastics/Metal/Glass) – Dissimilar Substrates

        Incure Uni-Weld™ Series Core Products - PET, APET

        Incure Uni-Weld™ 1827: Industrial UV Bonder (High Viscosity) – Metals/Glass/Plastics (Elastomers) – High Strength, Low Shrink/Absorp., Vibration Damping

        Incure Uni-Weld™ 1072: Low Viscosity, Low-Cost UV Bonder (Tack-Free, High Volume Plastics)

        Incure Uni-Weld™ 5942G: Industrial UV Bonder (High Viscosity, Low Shrink) – Multi-Material (Plastics/Metal/Glass) – Dissimilar Substrates

        Incure Uni-Weld Series Core Products - Nylon, LCP

        Incure Uni-Weld™ 1054: Ultra-Fast UV Bonder (Plastics: PC/PVC/Elastomers) – High Strength, Low Shrink/Absorp., Thermal Cycling

        Incure Uni-Weld™ 1403: Low Viscosity UV Bonder (High Strength) – Multi-Material (Plastics/Metals/Glass) – Thermal Resistant (Low Shrink/Water Absorp.)

        Incure Uni-Weld Series Core Products - PC, ABS

        Incure Uni-Weld™ 1404: Acid-Free UV Gasket Sealant (Mid Viscosity) – Optics Alignment (Glass/Metal/Plastic) – Low Shrinkage

        Incure Uni-Weld™ 5942: Industrial UV Bonder (High Viscosity, Low Shrink) – Multi-Material (Plastics/Metal/Glass) – Dissimilar Substrates

        Incure Uni-Weld™ 1832: UV/Visible Light Bonder (Low Viscosity, Low Absorp.) – Multi-Material (Plastic/Metal/Glass) – Dissimilar Substrates

        Package Size: 10 ml syringe / 30 ml syringe / 30 ml squeeze bottle / 100 ml squeeze bottle / 250 ml squeeze bottle / 1 kg Bottle / 1 Gallon Pail / 2 Gallon Pail / 5 Gallon Pail

        Find your perfect plastic bonding solution with Incure’s diverse adhesives! Shop Online or visit www.incurelab.com for more products. Need help choosing? Contact Us!

        Comments Off on Plastic Glue: Plastic Bonding Adhesives for PVC and Industrial Assembly